Entropy and Mutual Information for Markov Channels with General Inputs
نویسندگان
چکیده
We study new formulas based on Lyapunov exponents for entropy, mutual information, and capacity of finite state discrete time Markov channels. We also develop a method for directly computing mutual information and entropy using continuous state space Markov chains. Our methods allow for arbitrary input processes and channel dynamics, provided both have finite memory. We show that the entropy rate for a symbol sequence is equal to the primary Lyapunov exponent for a product of random matrices. We then develop a continuous state space Markov chain formulation that allows us to directly compute entropy rates as expectations with respect to the Markov chains’ stationary distributions. We also show that the stationary distributions are continuous functions of the input symbol dynamics. This continuity facilitates optimization of the mutual information and allows the channel capacity to be written in terms of Lyapunov exponents.
منابع مشابه
Capacity of Finite State Markov Channels with General Inputs
We study new formulae based on Lyapunov exponents for entropy, mutual information, and capacity of finite state discrete time Markov channels. We also develop a method for directly computing mutual information and entropy using continuous state space Markov chains. Our methods allow for arbitrary input processes and channel dynamics, provided both have finite memory. We show that the entropy ra...
متن کاملOn Entropy and Lyapunov Exponents for Finite-State Channels
The Finite-State Markov Channel (FSMC) is a time-varying channel having states that are characterized by a finite-state Markov chain. These channels have infinite memory, which complicates their capacity analysis. We develop a new method to characterize the capacity of these channels based on Lyapunov exponents. Specifically, we show that the input, output, and conditional entropies for this ch...
متن کاملAn Information-Spectrum Approach to the Capacity Region of the Interference Channel
In this paper, a general formula for the capacity region of a general interference channel with two pairs of users is derived, which reveals that the capacity region is the union of a family of rectangles. In the region, each rectangle is determined by a pair of spectral inf-mutual information rates. The presented formula provides us with useful insights into the interference channels in spite ...
متن کاملCapacity, mutual information, and coding for finite-state Markov channels
The Finite-State Markov Channel (FSMC) is a discrete time-varying channel whose variation is determined by a finite-state Markov process. These channels have memory due to the Markov channel variation. We obtain the FSMC capacity as a function of the conditional channel state probability. We also show that for i.i.d. channel inputs, this conditional probability converges weakly, and the channel...
متن کاملCapacity, Mutual Information, and Coding for Finite-State Markov Channels - Information Theory, IEEE Transactions on
AbstructThe Finite-State Markov Channel (FSMC) is a discrete time-varying channel whose variation is determined by a finite-state Markov process. These channels have memory due to the Markov channel variation. We obtain the FSMC capacity as a function of the conditional channel state probability. We also show that for i.i.d. channel inputs, this conditional probability converges weakly, and the...
متن کامل